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1 Introduction

In imaging systems where the focal plane detector array is not sufficiently dense, so as
to meet the Nyquist criterion, the resulting images will be degraded by aliasing effects.
This undersampling is a common problem among staring infrared imaging systems. This
is due to fabrication complexities and quantum efficiency problems associated with man-
ufacturing small and dense infrared focal plane arrays (FPAs). While it is possible to
equip such systems with optics to properly bandlimit the input, this generally means
employing optics with a very small instantaneous field of view (IFOV). This may be
highly undesirable in some applications. Furthermore, inexpensive charge coupled device
(CCD) cameras may also employ detector arrays which are not sufficiently dense for the
desired optics. Thus, the goal of this work is to obtain high resolution images, with
reduced aliasing, from such systems. In addition, we wish to remove the blurring effects
of the finite size detectors and the optics.

One way to overcome the undersampling problem, without low pass filtering the
input or sacrificing IFOV, is to exploit multiple frames from an image sequence. This is
possible if there is relative motion between the scene and the FPA during image sequence
acquisition. In this case, a unique “look” at the scene (i.e., a unique set of samples) may
be provided by each frame. The desired image sequence can be obtained if an imager
is mounted on a moving platform, such as an aircraft. We refer to this as uncontrolled
microscanning [1]. It is also possible to introduce a controlled mirror in the optical path
to translate the scene intensity image across the FPA. This is referred to as controlled
microscanning [1, 2]. Here we focus on uncontrolled microscanning and we consider both
rotational and translational motion of the scene relative to the FPA. The key to the high
resolution image recovery algorithm is accurate knowledge of the sub-pixel translation
and rotation of each frame. If these parameters are unknown, as in the uncontrolled case,
they must be estimated from the observed images. Thus, we must consider both image
registration and high resolution image reconstruction.

Several approaches to the high resolution image reconstruction problem have been
proposed in the literature. One of the first techniques proposed seeks to solve for an

unaliased discrete spectrum by solving a set of frequency domain linear equations 3]




This approach has been extended to treat noise in [4] and blur in [5]. These techniques,
however, do not address rotation which may be present in many applications. Further-
more, we have found that they tend to be highly sensitive to errors in the registration
parameters. This is particularly true when attempting to remove blur [5].

Another approach to the high resolution image reconstruction problem uses a pro-
jection onto convex sets (POCS) algorithm [6]. The POCS approach has been extended
to treat motion blur and noise in [7, 8]. The problem has also been approached from a
statistical estimation framework. Specifically, a maximum a posterior: (MAP) estimator
is developed in [9, 10] which is an extension of a single frame image expansion algorithm
proposed in [11]. A statistical estimation approach was first applied to forward looking
infrared (FLIR) data in [12]. In particular, a maximum likelihood technique using the
expectation maximization (EM) algorithm is developed which seeks to jointly estimate
the translational shifts and a high resolution image [12]|. In addition, a joint registration
and high resolution reconstruction technique using MAP estimation is presented in [13].
The work in [12] and [13] does not explicitly treat the case of rotational motion. Another
related MAP approach can be found in [14].

The reconstruction algorithm presented here can be viewed as an extension of the
basic approach presented in [15]. The technique in [15] seeks to minimize a specified
cost function using an iterative algorithm. This cost function is the total squared error
between the observed low resolution data and the predicted low resolution data. The
predicted data is the result of projecting the high resolution image estimate through the
observation model. Here we employ the same registration technique used in [15] and we
seek to minimize a related cost function. However, our approach includes a number of
important and fundamental differences. Some of the novel aspects of the work presented

here are as follows:

e The observation model uses accurate information about the optical system to form
a realistic point spread function (PSF). In particular, the PSF model is defined to

include the effects of the optics and the finite size detectors.

e The cost function defined here includes a regularization term. This extra term adds

robustness, particularly when only a small number of frames are available or when




then the fidelity of the data is low.

e The unconstrained minimization of the cost function is achieved using a gradient
descent and a conjugate gradient technique. The conjugate gradient technique, in

particular, provides rapid convergence.

e Finally, we study the application of high resolution image reconstruction to a real-

time infrared imaging system.

The organization of the rest of the paper is as follows. In Section 2, the observa-
tion model is described. Both a continuous and discrete model are developed. Section
3 addresses image registration. The high resolution image reconstruction algorithm is
developed in Section 4. In particular, the regularized cost function is defined and two
optimization procedures are described. Experimental results are provided in Section 5.
These include results obtained using simulated data and using FLIR images acquired
from a real-time system. Quantitative error analysis is provided and several images are

shown for subjective evaluation. Finally, some conclusions are given in Section 6.

2 Observation Model

In this section, the observation model is presented. This model is the basis for the high
resolution reconstruction algorithm developed in Section 4. We begin with a continuous
model which closely follows the physical image acquisition process. An equivalent discrete
model is then presented. It is the discrete model which is utilized in the reconstruction
algorithm. We conclude this section with the characterization of the system point spread

function, since this represents a key element in the observation model.

2.1 Continuous Model

A block diagram of the continuous observation model is shown in Fig. 1. The true scene
intensity image is defined as o(z,y). The motion of the imager that occurs between
image acquisitions is modeled as a pure rotation and translation of the scene intensity

image. For a moving imager and a stationary scene in the far field, this is a fairly
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Figure 1: Continuous observation model resembling the physical process of image acqui-
sition.

accurate model, since occlusion effects and perspective changes are minimal. Thus, the

k’th observed frame in a sequence can be expressed as
ox(z,y) = o(zcosby, — ysinby + hy, ycosby, + zsinby + vg), (1)

for k = 1,2,3,...,p. Note that 6 represents the rotation of the £’th frame about the
origin (i.e., z = 0, y = 0). The parameters hj and vi represent the horizontal and vertical
shift associated with the k’th frame.
The blurring effect of the optics and finite detector size is modeled by a convolution
operation yielding
0k (7, y) = 0k(2,9) * he(2,Y), (2)
where h.(z,y) is the continuous system PSF. More will be said about the PSF in Section

2.3. Finally, the blurred, rotated and translated image is sampled below the Nyquist rate

and corrupted by noise. This yields the &£’th low resolution observed frame
Ye(n1, n2) = ok (mTh, noT2) + mk(na, n2), 3)

where T7 and T, are the horizontal and vertical sample spacings and 7;(ni,n;) is an
additive noise term. Let the dimensions of the low resolution image yx(n1, n2) be Ny x Ns.
These data in lexicographical notation will be expressed as yr = [Yk,1,¥Yk2, - - .,yk,M]T,
where M = N;N,. Finally, let the full set of p observed low resolution images be denoted
]T

y=[Y{,Yg7aYE :[yl’y27"'7pr]T' (4)

Thus, all observed pixel values are contained within y.

4
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Figure 2: Equivalent discrete observation model illustrating the relationship between the
ideally sampled image z and the observed frames y.

2.2 Discrete Model

While the continuous model provides insight into the physical process, we require a
discrete observation model to develop the high resolution reconstruction algorithm. That
is, we need a model relating a discrete high resolution image to the low resolution observed
frames y. Figure 2 illustrates such a discrete model which is equivalent to that in Fig.
1. The difference here is that we first define z(n;,ns) to be an intensity image sampled
at or above the Nyquist rate with no blur or noise degradation. It is this discrete image
we wish to estimate from the observed frames. Let this high resolution image be of size
LiN; x LyN, = N, where L; and L, are positive integers. More will be said about
these parameters shortly. In later analysis it will be convenient to express this image in
lexicographical notation as the vector z = [21, 2o, .. . ,zn] 7.

As before, this image is rotated by 6; and shifted by Ay, and vy producing z(ni, n2).
Here we will define the shifts hx and v in terms of low resolution pixel spacings for
convenience. Note that this step requires interpolation since the sampling grid changes
in the geometric transformation. Theoretically, one could use ideal interpolation since
z(ny, ) is defined to be sampled above the Nyquist rate. However, in practice, simpler
interpolation methods such as nearest neighbor and bilinear interpolation can be used
[16). For large values of L; and Ly, the high resolution grid is so dense that simple
interpolation methods can be reasonably accurate.

Next, the system PSF is accounted for yielding

Z(n1,n2) = z(n1, no) * ha(ny, n2), (5)

5




where hg(ny,ns) is the equivalent discrete system PSF. Note that the blurring is per-
formed after the geometric transformation. If the PSF is circularly symmetric, then the
blurring can be equivalently introduced prior to the rotation. This saves on computations
since the blurring is performed only once in this case. Finally, the transformed image is

subsampled down to the resolution of the observed frames yielding
Ye(n1,n2) = zk(n1L1,n2L2) + ne(n1, n2)- (6)

Aliasing is generally introduced in this final step.

This discrete model can be rewritten in a simple form where the low resolution pixels
are defined as a weighted sum of the appropriate high resolution pixels with additive noise.
This generalized form can account for the PSF blurring, the geometric transformation and
the subsampling of the high resolution image. Specifically, the observed low resolution
pixels from frame k are related to the high resolution image as follows

N
Yk,m = Z Wen,r (Oks ks VE) Zr + Moy (7)

r=1
for m = 1,2,...,M and k = 1,2,...,p. The weight wp,,(6k, hg,vx) represents the
“contribution” of the r’th high resolution pixel to the m’th low resolution observed pixel
of the k’th frame. The parameters 6, hy and v, represent the rotation, horizontal and
vertical translational shifts, respectively, of the £’th frame with respect to some reference
on the high resolution grid. The term 7, in (7) represents an additive noise sample. To
further compact the notation, the model in (7) can be expressed in terms of the entire

set of low resolution pixels as

N
Ym = Z W, rZr + Nm, (8)
r=1
form=1,2,...,pM and where wy,, is simply the contribution of the r’th high resolution

pixel in z to the m’th low resolution pixel in y. It is assumed that the underlying
scene, z, remains constant during the acquisition of the multiple low resolution frames.
Furthermore, we assume here that the only frame to frame differences in the weights

result from rotation and translational of each low resolution frame relative to the high

resolution grid.
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Figure 3: Discrete detector model showing those high resolution pixels that contribute
to a low resolution pixel for two different registration positions.

A simple way to visualize the form of the observation model in (8) is to consider
only the blur from the finite detector size. This scenario is illustrated in Fig. 3. Here
each low resolution pixel is obtained by summing the high resolution pixels within the
span of that low resolution detector. One low resolution detector in Fig. 3(a) is shaded
to illustrate this point. This discrete detector model simulates the integration of light
intensity that falls within the span of the low resolution detector. As the low resolution
grid shifts relative to the fixed high resolution grid, as in Fig. 3(b), a different set of
high resolution pixels contribute to each low resolution pixel. This yields a new set of
linearly independent equations from (8). Clearly, some type of interpolation is required
for any non-integer shift on the high resolution grid or any non-trivial rotation. This
interpolation can be accounted for by modifying the weights in (8). This simple detector
model can give good results. However, a more realistic PSF model is described in the

following section.




2.3 System Point Spread Function

For most systems, there are two main contributors to the system PSF. The primary
contributor is generally the finite detector size as illustrated in Fig. 3. This effect is
spatially invariant for a uniform detector array. The second contributor is the optics.
Here we assume an isoplanatic model for the optics [17]. We derive and use a theoretical
PSF because, for the type of systems considered in this paper, direct measurement of an
unaliased system PSF is not possible.

Let us begin by considering a system with a uniform detector array. The effect of the
integration of light intensity over the span of the detectors can be modeled as a linear
convolution operation with a PSF determined by the geometry of a single detector. Let
this PSF be denoted d(z,y). Applying the Fourier transform to d(z, y) yields the effective

continuous frequency response resulting from the detectors
D(u,v) = FT{d(z,9)}, (9)

where FT{-} represents the continuous Fourier transform. Next, define the incoherent
optical transfer function (OTF) of the optics to be Hy(u,v). The overall system OTF is
given by the product of these, yielding

H(u,v) = D(u,v)H,(u,v). (10)
The overall continuous system PSF is then given by
h(z,y) = FT {H(u,v)}, (11)

where 77 ~*{-} represents the inverse Fourier transform. Finally, the impulse-invariant
discrete system PSF [18] on the high resolution grid is obtained by sampling the contin-
uous PSF such that

T mT1 neT:
hd(nl,ng)z L 2h( -1 2 2). (12)

LiL, Ly’ L

This accurately represents the continuous blurring when the effective sampling frequency
L1/T; exceeds two times the horizontal cutoff frequency of H(u,v) and Ly/T, exceeds
two times the vertical cutoff frequency [18].

Let us now specifically consider a system with uniform rectangular detectors. An

illustration of such a detector array with critical dimensions labeled is provided in Fig.

8



Figure 4: Uniform detector array illustrating critical dimensions.

4. The shaded areas represent the active region of each detector. The detector model

PSF in this case is given by

_ 1 z y\_ [ 1 for|z/a| <1/2 and |z/b| <1/2
d(z,y) = abrect (a’ b) B { 0 otherwise ’ (13)

Let the active region dimensions, @ and b, be measured in millimeters (mm). Thus, the

effective continuous frequency response resulting from the detectors is

sin(mau)sin(mbv)

D(u,v) = sinc(au, bv) = , (14)

T2qubv
where u and v are the horizontal and vertical frequencies measured in cycles/mm.
The incoherent optical transfer function (OTF) of diffraction-limited optics with a -

circular exit pupil can be found [17] as

Ho(u, 'U) — { %[COS"1 (.,%) — ﬁ-”l — (-p&c)z] for p < pec , (15)

0 otherwise

where p = v/u? + v2. The parameters p. is the radial system cutoff frequency given by
1

Pc= Xf_/#—’

where f/# is the f-number of the optics and X is the wavelength of light considered.

(16)

Since the cutoff of H,(u,v) is pe, so is the cutoff of the overall system H(u,v). Thus, the

9




impulse-invariant discrete system defined in (12) will accurately model the continuous
system when L; > [2p.T1] and L, > [2p.T>]. This choice of L; and L, also defines a
high resolution sampling grid at or above the Nyquist rate for an arbitrary scene. That
is, the effective high resolution sampling rates of L;/T; and L,/T> will be more than
twice the OTF cutoff frequency.

Figure 5 shows an example of D(u,v), H,(u,v), H(u,v) and h(z,y) for a particular
imaging system. The system considered is the FLIR imager used to collect data for the
experimental results presented in Section 5. The FLIR camera uses a 128 x 128 Amber
AE-4128 infrared FPA. The FPA is composed of Indium-Antimonide (InSb) detectors
with a response in the 3um - 5um wavelength band. This system has square detectors
of size a = b = .040mm. The imager is equipped with 100mm f/3 optics. The center
wavelength, \ = .004mm, is used in the OTF calculation. Figure 5(a) shows the effective
modulation transfer function (MTF) of the detectors, |D(u,v)|. The diffraction-limited
OTF for the optics, H,(u,v), is shown in Fig. 5(b). Note that the cutoff frequency is
83.3 cycles/mm. The overall system MTF, |H (u,v)|, is plotted in Fig. 5(c). Finally, the
continuous system PSF, h.(z,y), is plotted in Fig. 5(d).

The detector spacing on the Amber FPA is T} = T, = .050mm, yielding a sampling
frequency of 20 cycles/mm in both directions. Thus, the effective sampling rate must be
increased by a factor of 8.33 to eliminate aliasing entirely for an arbitrary scene. This
would require that we select Ly, L, > 9. In practice, we find that good results can be

obtained with smaller values of L; and L.

3 Image Registration

In most applications, the registration parameters in the observation model, 6, hx and
vg, will not be known a priori. Thus, they must be estimated from the observed image
sequence. Accurate sub-pixel registration is the key to the success of the high resolution
image reconstruction algorithm. A number of image registration techniques have been
proposed in the literature. We have found that a practical and effective method of
estimating the sub-pixel translation and rotation is using the technique in [15], which is

based on that in [19]. For convenience, this algorithm is presented here using the current

10
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Figure 5: (a) Effective MTF of the detectors in the FLIR imager (b) diffraction-limited
OTF of the optics (c) overall system MTF (d) overall continuous system PSF.
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notation.

To begin, define the first observed frame to be the reference frame and without loss

of generality let 8; = h; = v; = 0. According to our model,
ox(z,v) = 01(zcosby — ysinby, + hy, ycosby + zsinby, + v), (17)

for k = 2,3,...,p. Note that this assumes that the center of rotation is at the origin
(i.e., z = 0, y = 0). This is not restrictive however, since we allow any shift Ay and vy.

If the PSF blur is approximately circularly symmetric, then
6% (z,y) ~ 61(zcosby — ysinby, + hy, ycosdy + zsinby + vy). (18)

For very small values of 6, we can make the following approximations: sinf =~ 6, and

cosfr ~ 1. Using these yields
or(z,y) = o1(z — YOk + hg,y + z6; + Ug)- (19)

Now we use the first three terms of the Taylor series expansion as an approximation for

the right side in (19). This yields
ok(z,y) = 61(2,y) + (he — ¥0k)9:(z,y) + (vi + 20k) gy (2, ), (20)

where g,(z,y) = 2224 and g,(z,y) = 224,
In light of the relationship expressed in (20), we define the least squares estimates for
the registration parameters as follows
. arg min
Ok, hi, O = Ok, hx, vi Ex(6k, Pk, vk), (21)

where

Ep(6k, hiy vi) = > (0x(z,y) —61(2,y) — (he — ¥0k) 9o (2, y) — (v + 20k) gy (2, y))?.
(z,y)ES
(22)

Note that S represents the grid of points in the R? space, defined by z and y, at which

we have discrete samples. Rewriting this error in terms of the observed images yields

Ex(bk, hi, i) = 2/\:[ (y(m) — y1(n) — (ki — 12 T38x)G(n) — (vg + 11 T16k) Gy (m))*
ne (23)
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where n = [n;,ny] and N is the set of indices on the low resolution discrete grid for which
we have observations. Note that the center of rotation on the discrete grid is assumed to
be at n; = ng = 0. The functions §,(n) and g,(n) are discrete estimates of g.(z,y) and
94(z,7), respectively, at location z = n;T1 and y = nyT,. These can be computed using
scaled Prewitt operators [16], for example.

To solve the minimization problem in (21), we begin by differentiating E (6, hk, V)
with respect to 8, h; and vy, and set the derivatives equal to zero. This yields the

following three equations

Z (hk!ﬁ(n) + 'ngz(n)gy( ) + 9kg( ) Z yk(n gz (24)
neN neN
S (Pri=(n)gy(n) + v (m) + 6:3(m)gy (m)) = 3 Fu(m)gy (0 (25)
neN neN
and
> (hxg(0)ga(n) + vg(n)gy (m) + 6:5°(m)) = 3 Fu(n (26)
neN neN
where
§(n) = n1T1gy(n) — n2T29,(n) (27)
and
gx(n) = yr(n) — a1 (n). (28)

We then simultaneously solve these expressions. To do so let

MRy, =V, (29)
where
Cnen G2(n) Tonen §e(0)3y(n) Fnep g(n) §z(n)
ZnEN g:l:( ) y(n) ZneN gy(n) ZHEN g( )gy(n) (30)
Taen I(0)3z(n)  Toen §(0)3y(m)  Tnen 7°(n)

Ry = [hg, vk, 0], and
>nen Jr(n)gz(n)
nen Ge(0)gy(m) |- (31)
>nen Tx(n)g(n)

Finally, the estimated registration vector, Ry, = [hg, O, 0T, can be computed as
Ry = M™V;. (32)
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Table 1: Iterative registration algorithm for yi(n), where £ = 2,3,...,p.

step 1: Compute §(n), §,(n) and g(n) from y;(n) and form M matrix.
step 2: Let n =0, y0(n) = y(n) and RY = [0,0,0]7.

step 3: Compute Vi using gr(n) = yf(n) — y1(n) and thenlet n =n+ 1.
step 4: Compute R = M1V, + R?~L

step 5: if ||RY — RY|/||R27Y| < T, let Ry = R} and stop.

step 6: Resample yi(n) towards y;(n) according to R} to create y(n) and
go to step 3.

To obtain shifts in terms of low resolution pixel spacings (rather than in mm), we set
Ty, =T, =11in (27).

Because of the assumptions made, this technique is only accurate for small shifts and
rotations. To treat the case where larger values are expected, we follow the iterative
method used in [15] and [19]. To do so, the initial registration parameters are estimated
according to (32). Next yx(n) is shifted and rotated according to the registration param-
eter estimates so as to more closely match y;(n). This modified image is then registered
to y1(n). The process continues whereby yx(n) is continually modified until the registra-
tion estimates become sufficiently small. The final registration estimate is obtained by
summing all of the “partial” estimates. The iterative registration procedure for yx(n),
where k = 2,3,...,p, is summarized in Table 1.

Because the three parameters are well overdetermined by the data, this least squares
estimate is generally accurate. We find that the main source of error lies in the resam-
pling of yx(n) (step 6 in Table 1), since this requires interpolation on the low resolution
aliased grid. Some error is also introduced in the discrete gradient estimates. In general,
however, the algorithm appears to provide sufficiently accurate results for our current

application. In cases where the aliasing is more severe, a joint registration and recon-
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struction algorithm, like that described in [12}, [14], and [13], may be advantageous.

4 High Resolution Image Reconstruction

With estimates of the registration parameters, the observation model can be completely
specified. In light of the observation model in (8), we define the high resolution image

estimate to be
arg min
zZ

z= C(2), (33)
where
| M N 2 N N 2
C(z) = 5 Z (ym - Z wm,rzr) + 9 Z Zi = Z Qi 525 | (34)
m=1 r=1 =1 j=1
and ym, for m =1,2,...,pM are the observed pixel values. Clearly, the cost function in

(34) balances two types of errors. The first term on the right hand side is minimized when
z, projected through the observation model, matches the observed data. However, direct
minimization of this term can lead to excessive noise magnification due to the ill-posed
nature of the inverse problem. Thus, the second term serves as a regularization operator.
The parameters o ; are generally selected so that the regularization term is minimized
when z is smooth. Here we select o;; to be 1/4 only for those four values of j which
correspond to immediate spatial neighbors of z;. The others are set to zero. The weight
of these competing “forces” in the cost function is controlled by the “tuning” parameter
A. Larger values of \ will generally lead to a smoother solution. This is useful when only
a small number of frames is available or the fidelity of the observed data is low. It is also
possible to make A spatially adaptive in a fashion similar to that in [20, 21]. Finally, note
that the estimate defined in (33) and (34) can be viewed as MAP estimate in the case of
Gaussian noise and where z is a realization of a Gauss-Markov random process [13].
Next we consider two unconstrained optimization techniques for minimizing the cost
function in (34). First we consider a gradient descent approach and then we present a

conjugate gradient method.
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4.1 Gradient Descent Optimization

To derive the gradient descent update procedure for the image estimate, we begin by dif-
ferentiating (34) with respect to some pixel z for k =1,2,..., N. This partial derivative

is given by

g9i(2) = azk Zwmk [Ewmrzr } (35)

N
S e e /|
j=1 i=1 j=1

The iterative procedure begins with an initial estimate of the high resolution image 2°.

A relatively simple starting point can be obtained by interpolating the first frame using

bilinear or bicubic interpolation. The gradient descent update for each pixel estimate is

B =2 — (2", (36)

forn=0,1,2,...and £k =1,2,..., N. Alternatively, the update can be written as

2"t =" — gg”, (37)
where
91(?2)
" = 92(:Z ) _ (38)
gn(2")

The parameter ¢® in (36) and (37) represents the step size at the n’th iteration. This
parameter must be selected to be small enough to prevent divergence and large enough
to provide convergence in a reasonable number of iterations. The optimal step size can

be calculated by minimizing
C(z") =C(&" - €"g") (39)

with respect to €”. To do so we begin by writing C(2"*") using (34) and (36). Next we
differentiate this with respect to € and set the derivative equal to zero. Solving for &"

yields, after some manipulation,

o Em._l Ym (21{\,:1 W, rZy — ) + A EzN 19i (2? - Zl\{-l awz] ) : (40)

Em—l 77?71 + )‘ Zz-—l gz
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Table 2: Proposed gradient descent iterative estimation algorithm.

step 1: Begin at n = 0 with initial estimate 2° being the interpolated low
resolution frame 1.

step 2: Compute the gradient g;(2") givenin (35) for k =1,2,..., N, yielding

n

g".
step 3: Compute the optimal step size €™ using (40).
step 4: Let 2" = 2" — g™

step 5: If ||27 — 27||/||2"|| < T, let Z = 2"*" and stop.

step 6: Let n =n + 1 and go to step 2.

where .
Ym = Z wm,rgr(in) (41)
r=1
is the gradient projected through the model, and
N
g = gi(2") = > _ 0ijgi(2") (42)
J=1

is g;(2") minus the weighted sum of its “neighbors.” This iteration continues until the
cost function stabilizes or ||2"*! —2"||/||2"|| < T, where T is a specified threshold value.

A summary of the gradient descent optimization procedure is provided in Table 2.

4.2 Conjugate Gradient Optimization

In this section, we describe a conjugate gradient optimization procedure for minimizing
the cost function in (34). In particular, we employ the Fletcher-Reeves method [22]. We
later show that with little additional computational complexity, faster convergence can
be achieved using this method compared to gradient descent.

The basic conjugate gradient image update is given by
2t = 27 + e™di(27), (43)
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forn = 0,1,2,... and k£ = 1,2,...,N. Here di(2") is the conjugate gradient term.

Alternatively, the update can be written as

2n+1 = 4" + 6ndn, (44)
where
di(z™)
do(Z™
dn = 2(: A (45)
dn(z")

As before, the parameter €™ is the step size at the n’th iteration. The optimal step size

can be calculated by minimizing C(2"*!) = C'(2" +¢"d") with respect to ¢”. This yields

S0 (D0 w2 = ) + AT 4 (20 = T 04%))

En = = ) 46
S G AT 4o
where
N
¢m = Z wm,rdr (2n) (47)
r=1
and
_ N
di = d,(in) —- 2 &i,jdj(in). (48)
j=1
The conjugate gradient vector is initially set to be
d’ = -g° (49)
This is updated according to
dn+1 — __gn+1 + andn’ (50)
where +1\T g+l

(g")7g"
Again, the iterations continue until the estimate converges. A summary of the conjugate

gradient optimization procedure is given in Table 3.
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Table 3: Proposed conjugate gradient iterative optimization algorithm.

step 1: Begin at n = 0 with initial estimate 2° being the interpolated low
resolution frame 1.

step 2: Compute g° and initialize conjugate gradient vector as d° = —g°.
step 3: Compute the optimal step size €™ using (46).

step 4: Let 2" = 3" + ¢"d".

step 5: If [|2"T! — 27||/||2"]| < T, let 2 = 2™*! and stop.

(&) Tgrt

step 6: Compute g™ and let d"™! = —g™+! + f*d", where " = &£
(&")"e

step 7: Let n =n+ 1 and go to step 3.

5 Experimental Results

In this section a number of experimental results are presented in order to demonstrate the
performance of the proposed algorithm. The first set of experiments involve simulated
data derived from a single broad band visible image. The second set of results use data

obtained from a real-time FLIR imaging system.

5.1 Simulated Imagery

Here we use simulated data in order to evaluate the algorithms quantitatively. In par-
ticular, 16 low resolution images are generated by rotating, translating, blurring and
subsampling an “ideal” image. The rotation and translation parameters for each frame
have been selected arbitrarily and are shown in Fig. 6. The original image is of size
250 x 250 and the down sampling factors are L; = L, = 5. The blurring function is
a b x 5 moving average filter, which simulates the low resolution detector effects. Fi-
nally, additive Gaussian noise of variance a% = 10 is introduced in each frame. The

estimated registration parameters, using the algorithm in Table 1, are also shown in Fig.
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Registraion Parameters

theta_k (degrees)

Figure 6: Actual and estimated registration parameters for each of the 16 simulated low
resolution frames. The shifts hy and vi are measured in terms of low resolution pixel

spacings.

6. The mean absolute error (MAE) between the actual and estimated translational shifts
is 0.0414 low resolution pixel spacings and the MAE for the rotation parameters is 0.0250
degrees.

The original 8 bit grayscale image “Aerial” is shown in Fig. 7(a). One typical frame
of the simulated low-resolution noisy data is shown in Fig. 7(b). The multi-frame image
estimate, using the estimated registration parameters, is shown in Fig. 7(c). The initial
image estimate used here is a bilinearly interpolated version of the first frame. Twenty
iterations of the conjugate gradient optimization have been performed with A = 0.1. We
find that the algorithm is not highly sensitive to the choice of X. For comparison with the
multi-frame estimate, a bicubic interpolation of the single frame in Fig. 7(b) is shown in
Fig. 7(d).

To show the convergence behavior of the gradient descent and conjugate gradient
procedures, the values of the cost function in (34) are plotted in Fig. 8 versus iteration
number for each. Note that the conjugate gradient method shows superior convergence
speed. The MAE between the multi-frame estimate and the “ideal” image is plotted

in Fig. 9 as a function of the number of frames used. For comparison, the MAEs
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Original Image Aerial

250k

Noisy Low—Resolution Observed Frame 1

Figure 7: (a) Original image “Aerial” (b) simulated low resolution frame 1 where L, =
Ly =5 and o] = 10 (c) multi-frame image estimate using 16 frames with A = 0.1 (d)

bicubic interpolation of frame 1.
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Cost Function vs. Iterations
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Figure 8: Convergence behavior of the gradient descent and conjugate gradient proce-
dures using the 16 frames of simulated data. The noise variance is 0727 =10 and A =0.1.

of the first frame bilinearly and bicubically interpolated are also shown. With only
one frame, the proposed algorithm’s performance is only slightly better than that of the
bicubic interpolator. However, with additional frames, the estimate becomes significantly
improved with respect to the single frame interpolators. Similar results are observed with

mean squared error.

5.2 FLIR Imagery

Now we consider applying the multi-frame algorithm to FLIR data from the imager
described in Section 2.3. We have chosen to perform a reconstruction with L; = Ly = 5,
although this resolution may not be sufficient to avoid aliasing effects entirely. The
theoretical discrete PSF of the FLIR system on the high resolution grid, given by (12),
is shown in Fig. 10.

The multi-frame algorithm is tested using 20 frames of the FLIR imagery. The frames
have been acquired at a 60 frame per second rate. The rotation and translation is in-
troduced by arbitrarily manipulating the imager during acquisition. One typical original
resolution frame is shown in Fig. 11(a). This 80 x 80 image represents a region of interest

from the full 128 x 128 Amber array. The scene contains a number of small power boats
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MAE vs. Number of Frames Used
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Figure 9: Mean absolute error for the multi-frame estimator using different numbers of
frames. The noise variance is 072, =10 and A =0.1.

and trailers on a gravel parking lot with a fence in the foreground. The multi-frame
estimate is shown in Fig. 11(b) for A = 0.1. Again, the initial image estimate is obtained
by bilinearly interpolating the first frame and 10 iterations of the conjugate gradient
procedure have been performed. For comparison, a bilinearly interpolated single frame
is shown in Fig. 11(c). A bicubically interpolated version of the single frame is shown
in Fig. 11(d). The multi-frame reconstruction appears to show significantly improved
image detail. In addition, note that the aliasing artifacts on the diagonal beam of the
gate in the foreground of Figs. 11(a), 11(c) and 11(d) are virtually eliminated in the
multi-frame estimate. The estimated registration parameters for the 20 observed frames
are shown in Fig. 12.

Finally, to illustrate the convergence behavior of the algorithms using the FLIR data,
the cost function is plotted in Fig. 13 versus iteration number for both the gradient
descent and the conjugate gradient optimization methods. Again, the conjugate gradient

algorithm exhibits slightly faster convergence.
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Figure 10: Theoretical discrete system PSF of the FLIR imager for Ly = Ly = 5.

6 Conclusions

Aliasing reduction and resolution enhancement can be achieved by exploiting multiple
frames which are rotated and/or translated with respect to one another. This is possible
because each frame offers a unique set of discrete samples. For an imager mounted
on a moving platform, such as an aircraft, the desired image sequence may arise from
natural line-of-sight jitter and rotation of the platform. With this in mind, it may then
be possible to relax image stabilization requirements in some applications and obtain
improved resolution images through the proposed algorithm. The tradeoff here is that
of temporal resolution for spatial resolution. That is, multiple low resolution frames are
required to form each new high resolution image.

The key to the success of the algorithm is having an accurate observation model. This
includes the image registration parameters and the system PSF. The observation model
proposed here includes accurate information about the optical system. We believe that
this provides a reasonably accurate system PSF. A regularized cost function defines the
image estimate. Minimization of the cost function is performed using either a gradient
descent or conjugate gradient technique.

The quantitative results obtained show that the multi-frame image estimates have sig-

nificantly lower error than estimates formed by single frame interpolation. Furthermore,
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Figure 11: {2) FLIR low resolution frame 1 showing small power boats and trailers on
T i «E”}

a gravel parking lot {b) multi-frame estimate using 20 frames with L, = Ly = 5 and
A== (0.1 {¢) bilinear interpolation of frame 1 (d) bienbic interpolation ol frame 1.
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Figure 12: Estimated registration parameters for the 20 frames acquired with the FLIR
imager.

we believe that the FLIR results show that the multi-frame estimate has significantly
improved image detail. In particular, edges and fine structure emerge in the multi-frame
reconstruction that are not visible in the low resolution data. Because these features

offer important visual cues, we believe that the utility of the processed image is greatly

enhanced.
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